METHOD STATEMENT

TENDER FOR THE DEMOLITION
OF 2 CHIMNEYS & 3 TANKS

Contracting Authority: ENEMALTA PLC
Contractor: DDE ATTARD LTD

1. Introduction
This method statement shall be divided into two phases:
Phase 1 – Cleaning and Dismantling of Tanks.
Phase 2 – Dismantling of Chimneys.

2. Method Statement
This method statement has been drawn up at design stage of the project, in order to obtain approval from the Environmental Authority and the Contracting Authority on proceeding with the proposed works in full compliance with tender requirements and legal obligations.

2.1 Design
The design phase will include the following activities:

2.1.1 Survey on site to collect all the information
During this stage all the standard operating procedures to be executed shall be disclosed. In particular:
- Preliminary site inspection on the equipment to be demolished;
- Type and location of plant still operating;
- Emergency plan and site internal regulations;
- Topographic and planimetric survey;
- Traffic and vehicle traffic on site.
2.1.2 Issue of the method statement
The method statement will be submitted to the Project Supervisor and to MEPA for comments &/or approval.

2.1.3 Items identification
All the items to be dismantled will be marked on site. This activity will be carried out also for piping and other equipment in order to ascertain recognition. Piping located near the equipment to be dismantled, that will remain operative during the work execution will also be identified.

2.1.4 Marked item planimetric drawings
Planimetric drawings of the marked equipment/areas will be issued.

2.1.5 Environmental protection and safety
Environmental protection devices to be used on this project shall be:

2.1.5.1 VOC and dust detector monitoring units:
Planimetric drawings will be issued with the location of VOC and dust detector units to be installed during the work execution.

2.1.6 Isolation plan for plant not being dismantled:
An isolation plan of the equipment and pipework to be dismantled and those items which will remain shall be provided to us by Enemalta.

2.1.7 Health & Safety Plan:
A Health and Safety Plan shall be developed for this project.

2.1.8 Equipment specifications:
The construction site will be self-sufficient for:
- water;
- power energy;
- containment system.
Equipment used are:
Yard preparation and demolition of containment bund walls:
- Dust detectors / VOC monitoring units;
- Excavator, pneumatic drill, truck;
- Compressor and motor generators;
- Scaffolding and platforms;
- Polythene sheets and barriers of light metal sheet;

Cleaning
- Skid Steer Loader (bobcat) – 3 Tons capacity;
- Lattice crane – 200 Tons capacity;
- 2 Mobile Scaffolds and Sky platform (for chimney);
- Equipment to clean up lines and tanks to be dismantled.
- Air pumps, decanter tank, piping, horizontal and vertical centrifugal pumps;
- Equipment for high-pressure water cutting;
- System for inner tank lighting;
- Piping, tools, skips to contain sludge / oil recovered;
- Odour control chemical - Amerscent 72.

Dismantling
- Dedicated cutting equipment;
- Crane of suitable capacity;
- Scaffolding and platform;
- System for inner tank lighting and power unit;
- Authorized flatbed trucks for the transport of scrap metal classified in full compliance with the regulations as stated above;
- Grinder, hacksaws, oxy-acetylene cutting units.

Handling and transport
- Identification plates for waste segregation;
- Authorized trucks;
- Skips;
- Covers and hoarding.
Personal Protective Equipment

- Particle filter mask (full face);
- Safety boots;
- Tyveks;
- Gloves;
- Safety harness;
- Eye protection;
- Fire retarding aprons;
- Hot work face shield.
- Spill kit.

2.1.9 Work Team

Team Leader – Salvo Leone
Operators – 5 persons
Safety/Environmental Competent Person – Nicolette Micallef
Industrial Hygienist – Dr. George Peplow

2.1.10 Training and risks information

Staff on site shall have undergone competence and health and safety training on the following areas:

- Emergency and evacuation plans;
- The specific risks of the site;
- Principles of health and safety awareness;
- Operating procedures;
- Environmental protection.
- First aid;
- Fire fighting;
- Safe work at heights;
- Safe use of mechanical lifting equipment.

This method statement is a working document, and therefore may be amended as work proceeds or on the request of MEPA or the Contracting Authority.
2.2 Preliminary activities and preparation works

We list below the preliminary work necessary to carry out the activities:

- The construction work area shall be closed off to limit access of third parties to construction site. Warning signage, warning tape and hoarding shall be used to delineate the work area, as appropriate.
- Installation of VOC and dusts monitoring detectors in designated points.
- Positioning of the firefighting equipment to be provided on site.
- Preparing work permits for confined space entry as per the legal requirements of Legal Notice 41 of 2004. Work Place (Minimum Requirements for Work) (Confined Spaces and Spaces having Explosive Atmospheres) Regulations.
- Preparing work permits for cold work and hot work as required in the Health and Safety Plan.
- Inspecting markings on plant, equipment and pipework to be dismantled and those to be left behind.
- After performing these activities, it will be possible to carry out the dismantling activities listed in the following paragraphs.

3. PHASE 1 – CLEANING & DISMANTLING OF TANKS

3.0 Tank 1 and Tank 6: Cleaning

Enemalta shall empty the tanks from Heavy Fuel Oil before works commence.
Only an estimated 1 foot of sludge will remain within each tanks.
Tank-2 shall not require cleaning, as it has already been cleaned.
Cleaning of Tank 1 and Tank 6 shall commence simultaneously as indicated in the attached Gantt Chart.

3.1 Air quality monitoring

The Industrial Hygienist shall monitor the level of VOCs in the air inside the tank, to ascertain that the work area is safe for workers to operate in.
Air quality monitoring shall continue to be analyzed throughout the cleaning process, to ascertain the air quality remains safe with respect to VOC limits.
The site shall also be monitored for VOC limits, to determine whether there is a risk of environmental contamination of the area, as a result of the operations.
The VOC Test shall also take into consideration the level of odours present, if any, within the tank to allow for mitigation measures to be taken, if necessary.
3.2 Tank preparation

- Pipework to be dismantled (previously identified with the Project Supervisor) shall be isolated from the rest of the plant which will not be removed, with a blind disk at the battery limit.
- Provisional works to protect piping and equipment that will not be dismantled, near the work area of the tank, will be carried out – the main control measure to prevent damage to ‘live’ plant shall be protection using sheet metal;
- Electrical isolation of cable and any relevant equipment located in the containment bund;
- Electrical isolation of the equipment to be dismantled in full compliance with Enemalta procedures and Maltese legislations and regulations;
- Dismantling of containment wall with excavator, and jackhammer;
- During the activities of dismantling, hoarding (metal and polythene sheets) will be placed to minimize contamination.
- All pipes and pumps used for tank cleaning, shall be properly cleaned in full compliance with industry best practices.
- Pipework connected to the tank shall be isolated from the rest of the plant, and dismantled into segments of lengths which are manageable to transport.
- All materials removed will be transported offsite and taken to an authorized disposal facilities in accordance with the local waste management rules and regulations as enforced by MEPA.

3.3 Tank cleaning

- A hole shall be cut in the shell wall of the Tank, at a height of 40cms (just above the level of sludge). The opening shall have the following dimensions: Height: 3 metres x Width: 3 metres. Cold cutting shall be used to manage the cut. Refer to the below diagrams.
- A hole shall be cut in the shell wall roof of the Tanks, with a dimension of 4 metres x 4 metres. This will allow waste sludge to be removed from the Tank by a Crane.
- With reference to section 3.1, the Air Quality of the work area and the surrounding environment shall continue to be monitored by the Industrial Hygienist to ascertain that the level of VOCs in the air is safe for workers to operate in.
- The air quality inside the Tank shall be inspected prior to workers entering the confined spaces, using a permit to work system, to ascertain the atmosphere is not an explosive mixture.

3.4 Removal of Sludge from Tanks

- Sludge shall be removed from the designated tanks and transferred into a nearby empty water tank, which has been chosen by Enemalta to hold the waste sludge collected during the cleaning process.
- A 200 Tons Lattice Crane shall be positioned appropriately to reach Tank 1, Tank 2, Tank 6 and the Water Tank which shall be used to contain the HFO sludge collected.
- Sludge shall be collected from inside the Tank using a skid steer loader and placed into a metal sealable container with the capacity of 5m³ (modified skip).
- The filled container will be sealed, secured to the crane from all four corners, lifted through the roof opening in the tank and transferred onto the water tank. Once above the water...
tank, the skip will be purposely tipped using the guy wires of the crane and its contents dumped into the water tank from a suitable height, so as not to spill.

3.5 Scrapping of Tank Walls

- Once the tank is emptied of sludge, two mobile scaffolds will be entered into the tank for scraping of the walls and roofs.
- Workers will manually scrap the internal lining of the tanks.
- HFO dried sludge residue removed by the scraping process shall be transferred from the tank being cleaned into the water tank with the same process of the sludge removal.

3.6 Air quality inspection and certification of decontamination

- With reference to section 3.1, the Air Quality of the workarea and the surrounding environment shall continue to be monitored by the Industrial Hygienist to ascertain that the level of VOCs in the air is safe for workers to operate in.
- Following removal of all sludge and dried sludge residue from the inside of the tank, the Industrial Hygienist shall issue a certificate to declare the tank decontaminated, odour free and ready for dismantling.
- After tank cleaning, and before the start of the dismantling activities of the Tank, it is necessary to check the air quality within the double roof as stated in the Clarification No. 1 dated 29-10-2014.
- Such monitoring is important to verify the presence of mixtures of hydrocarbons in liquid or explosive gaseous state in the space between the two roofs which may be present.
- First a visual inspection of the roof shall be carried out. The roof will be inspected from the external and internal side.
- If there is no liquid or gaseous hydrocarbon present, it will be possible to hot cut the tank for dismantling.
- In case of the presence of liquid or gaseous hydrocarbon, a number of holes will be made in the roof. These will allow for nitrogen or steam to flow in between the sheets to remove the flammable mixture that could be present. Similar procedure should be performed on the bottom of tanks. In fact, over time, leakages from the bottom could be identified and hydrocarbons could be in the underlying area. All holes made in the shell of the tank shall be carried out using cold cutting techniques, where there is the risk of an explosive atmosphere. The figure below shows schematically the activities to be carried out between the roof of the Tank and for the Tank bottom.
3.7 Spill Containment

- While all precautions shall be taken to ensure that spills of sludge are avoided, a contingency plan for spill cleanup shall be made available to the operators. This will allow for immediate and appropriate containment, collection and decontamination of any areas which may have been affected by a spill.
- On taking into account the density of the sludge, it has been deemed reasonably safe to transfer the sludge in a container with a capacity of 5m³. Such capacity would be manageable to control in the unlikely event of a spill.

The dismantling process shall be the same for tanks 1, 2 and 6. The sequence for dismantling shall be as follows: Tank 2, Tank 6, and Tank 1.

3.8 Dismantling of Tank – Roof

- With reference to section 3.1, the Air Quality of the workarea and the surrounding environment shall continue to be monitored by the Industrial Hygienist to ascertain that the level of VOCs in the air is safe for workers to operate in.
- In this method statement we are assuming the absence of an explosive atmosphere under the bottom and between the double roof, so we will proceed with hot cutting– using a permit to work system.
- The operating staff can access the roof of a tank only after the inspection in order to define the integrity of the sheets. During the cutting and handling of the sheets, the workers will always be secured with a certified safety harness. The cutting will begin from the roof of the
Tank and proceed with the walls (jacket shell), then the sheets at the bottom with steam coils. All the sheets will be previously marked for cutting to ensure adequate dimensions, in order to be easily handled and transported in manageable segments by truck.

- Where the integrity of the roof is not sound, the roof will be cut out as a whole segment with workers operating from a lifting platform aside the tank. The roof shall be lowered to the ground whole, and cut into manageable segments at ground level.

3.9 Lowering of Dismantled Segments

- Metal segments marked for cutting shall have holes drilled into the four corners. This will allow the segments to be secured to the crane prior to cutting.
- Hot cutting shall be used to disconnect the marked segment from the rest of the plant.
- Once a segment has been cut, it will be lowered to the ground level using the crane to which the metal segment has already been secured.
- If further segmenting into more manageable dimensions is required, this shall be carried out at ground level. Otherwise, the waste metal sheet would be loaded onto a truck, ready for transport off site.

3.10 Dismantling of Tank – Walls

- The walls of the tank shall be marked for cutting into segments of approximately Height: 11 metres (along the vertical axis) x Width: 2.5 metres (along the horizontal axis) (to fit exactly onto the trucks).
- As previously described in section 3.8 (roof dismantling), each marked segment shall be secured for lowering before cutting commences.

3.11 Dismantling of Tank – Floor

The floor of the tank shall not require securing before cutting, because the segment is not suspended, it shall be cut and loaded for transport, following the safe procedure as previously described.

3.12 Cutting of Tank Metal Sheets

All metal sheets cut shall be of dimensions which are manageable to secure, load/lift/lower, transport and which will minimize risk of injury of operatives. An estimated 4 trucks will be available to transport waste off site on a regular basis, every day.
3.13 Following the Dismantling

- Appropriate control measures will be taken in order to reduce dust and smells which may be generated by these activities. The removed materials will be segregated, stored, classified and disposed of in compliance with European and Maltese waste management and environmental legislation.
- After the full removal of the tank, the area under the tank shall be inspected. This area will be cleaned and free of all trace of processing residue and hydrocarbons.
- Once a tank is cleared, the main pipework and the pentomag mixing units will be dismantled.
- The dismantling process for each tank shall be the same for Tank1, Tank2 and Tank 6.
- The sand present between the double bottom will be removed, analyzed, classified and transferred to dump in full compliance with local regulations.
- After the dismantling of tanks and controls of the surfaces, civil works will be made to restore and finish the workarea requested in your Tender Ref. N. GN/MPS/DO/2173/2014 of 10.17.2014 and subsequent clarification letters.

4. PHASE 2 – DISMANTLING OF CHIMNEYS

4.0 Chimney-1 and Chimney-3: Dismantling
In paragraph 14.4 of your tender Ref. No: GN/MPS/DO/2173/2014 of 17/10/2014: there is the following statement: “The lining is constituted of fire bricks (circa 113mm thick) and an external reinforced concrete shell (various thicknesses along the length of the chimney as indicated on drawings). Glass wool insulation is sandwiched in between the internal brick lining and the external concrete lining. Another reinforced concrete lining was later applied on the original reinforced concrete lining.” We understand that the configuration of chimney wall shall be like schematic shown in the below figure.
As specified in the tender, the chimney has been modified over the years, from its installation. Originally it had a tubular element composed of steel of a thickness varying between 12 mm and 8 mm from the base to the top. Subsequently after many reinforcing and repairing activities of the original shell, the external structure has been realized as shown in above figure. The weight of the entire stack is around 420 tonnes of which about 70 tons of steel, 65 tons of brick and the other of concrete.

Chimney 3 shall be dismantled first, followed by Chimney 1.
4.1 Dismantling of Chimney

The dismantling will be carried out with as follows:
- The air quality inside the Chimney shall be inspected by the Industrial Hygienist for Confined space entry.
- Any waste material at the base of the chimney shall be removed.

4.2 The Industrial Hygienist shall test the Chimney for the hazardous substances

- In the present offer we suppose the absence of asbestos. The determination of the presence of asbestos and its management will be done in full compliance with Asbestos Policy Document of 28-Mar-2008 ver. 3 attached at your tender Ref. No: GN/MPS/DO/2173/2014 of 17/10/2014.
- The glass wool layer of the chimney will be tested by the Industrial Hygienist for hazardous substances prior to dismantling.
- The layer of deposit on the inside of the chimney wall shall be tested by the Industrial Hygienist for hazardous substances prior to dismantling.

4.3 Dismantling of Degassing Tower (for Chimney 1 only)

- Prior to the dismantling of the disused degassing tower, surface scrapings shall be undertaken to inspect for a toxic deposits from the nearby chimney emissions that may have congealed on the surface. One representative sample shall be collected from various parts of the surface. The sample shall be analysed for the following parameters:
 Asbestos fibres & Vanadium.
- The degassing tower is mainly made up of wooden and plastic components. Dismantling of the components only require manual work and the use of hand tools. The material from dismantling of the degassing tower shall be segregated and packaged into big bags, loaded onto trucks and transported off-site for disposal at an authorized facility.

4.4 Scaffolding

A sky platform shall be erected around the stack prior to dismantling. The scaffolding shall be certified before use, following any adverse weather conditions or following any damage/incident related to the structure.

Hoarding shall be installed around the Chimney to minimize dispersion of dust and other particle debris which may be generated by the dismantled process.

4.5 Core drills

Core drilling shall be carried out on the outside surface of the chimney to verify the thickness of the reinforced concrete, the layer of glass wool, the shell of brick and internal steel.

Ten core samples will be taken along the chimney at a height of 2m, 15m, 20m, and 35m – for Chimney 1 (42 metres).

Five core samples will be taken along the chimney at a height 2m, 8m, and 10m – for Chimney 3 (11 metres).

If the samples underline a substantial differences in the structure of the chimney, additional holes will be made in order to characterize the structure.
4.6 Cutting of the Chimney

The first cut of the circumferential outer wall of concrete will be carry out. In order for the components which make up the Chimney wall to stay intact during the dismantling process, it has been decided that the Chimney shall be cut just below the flanges – this will allow for solidity of the structure during the cutting and handling activities. Dismantling of the Chimney will proceed from the top towards the bottom. 6 Holes will be drilled around the circumference of the Chimney below the flange. This will allow for the segment to be secured to the crane prior to cutting. Segments shall be approximately 8 metres long. Cutting will be performed using dedicated cutting equipment.

4.7 Segregation of Waste from Chimney Dismantling

Once disconnected, the segment will be lowered to the ground, where it will be further dismantled into the separate components which make up the Chimney wall:
- Chimney 1 - concrete, steel, glass wool, bricks.
- Chimney 3 – concrete and bricks.

Construction debris from the dismantling process shall be collected and packaged into big bags, loaded onto trucks and removed off-site for disposal at an authorized waste management facility.

For Chimney 3 the crane will remain in the same location used for the dismantling of tanks. For Chimney 1 the crane shall be relocated to the lower level, in order to be close to the stack.

4.8 Transport of Materials

Materials shall be cut into sizes suitable for transport by truck before packaging and loading for transport.

4.9 Following dismantling of Chimney

Following the completion of dismantling works, the construction site shall be cleared of all debris and inspected with the Project Supervisor in full compliance with the contract provisions.
5 ANNOTATIONS

5.1 General
Work will be performed in full compliance with the tender contract and the Method Statement developed in the design phase and submitted to the Project Supervisor and MEPA. As previously stated, they can request further changes before final approval.
The procedures outlined in this statement will constitute the minimum requirements necessary for the execution of the work.
The relevant regulations to carry out the work are attached in Annex 3 – Relevant Legislation.

5.2 Contain Dust, smell, VOC
As previously mentioned, all necessary control measure to contain dust, smell, VOC, etc. will be adopted. The equipment used will be certified and appropriate for the designated task. Also the operators who will perform readings and tests will be competent and certified. During execution of the works all the precautions and procedures to minimize and contain dust, smells and VOC will be implemented.

5.3 Check explosiveness and presence of hydrocarbon
All the equipment used for the controls and the presence of hydrocarbons and explosive atmosphere will be certified and suitable for purpose. Also the operators will be certified in accordance with the Maltese laws.

5.4 Equipment
Cranes, Sky-walkers, Platforms, Scaffoldings, Power Generator, and the other equipment used to carry out the work will be certified (with all certifications provided) and marked CE.
Staff will be qualified in full compliance with Malta laws.
All the lifting, the use of sky-walkers, platforms and scaffoldings are always preceded by a lifting, handling and assembly plan prepared by a competent person and approved by the supervisor.
These plans will be delivered in the design phase and will be part of health & safety plan.
In case of request after the execution of surveys, plans will be reviewed and submitted for further approval.

5.5 Electrical Isolation
Before commencement of works, the Project Supervisor shall identify the equipment and cables to be isolated.
5.6 Activities on site
The work will be performed during normal operation of the Thermal Power Plant. All the staff that work in the construction site will be qualified and will be registered as per Enemalta procedures. Weekly safety meetings will be held. Targets of these meetings will be to:
- analyze the results of the audits;
- identify corrective measures;
- inform teams about the activities scheduled for the next week;
- ensure compliance with security procedures;
- prevent and protect staff;
- analyse environmental factors;

The frequency of meetings can be modified, based on site needs.

5.7 Management
- Specific activities shall be regulated on site by procedures after approval by the Team Leader.
- The Safety and Environment Competent Person shall prepare a construction Health and Safety Plan, on the basis of this Method Statement.
- The Team Leader shall manage the activities, operations and staff on the construction site. He shall be also be responsible for liaising with the Enemalta Project Supervisor.
- Management shall include detailed time scheduling, Health and Safety Plan coordination, quality plan, cost planning.
- At the end of each month, the Team Leader shall issue a Monthly Report to the project Supervisor.
6 WASTE MANAGEMENT

The following waste streams have been identified as to be generated from this project:

- **C&D Waste – EWC 17 09 04, 17 09 03* (to confirm)**
 Debris generated from the demolition of the bund wall. The construction debris shall be segregated and transported by a MEPA Registered Waste Carrier to an authorized facility for disposal. Should the demolition debris be found to be contaminated material, this will be stored inside a covered 6 yards skip inside the bund until it is disposed of as contaminated C&D waste.

- **Scrap Metal – EWC 17 04 07**
 Generated from dismantling of tanks, chimneys and other metal plant. Scrap metal shall be cut into manageable components on-site, transported by a MEPA Registered Waste Carrier to the bidder’s storage facility and later export to an authorized for recycling.

- **Waste from the reclamation of HFO Sludge – EWC 05 01 11***
 HFO Sludge collected from holding tanks shall be processed on-site for the purpose of reclaiming as much reusable material from the substance as possible. Waste generated from this process shall be packaged on-site, temporarily stored on-site with appropriate bunding (spill prevention), and later the waste shall be transported off-site by a MEPA Registered Waste Carrier for export to an authorized hazardous waste incineration facility.

- **Sludge from HFO – EWC 10 01 20*, EWC 01 01 21 (to confirm)**
 Not all the HFO Sludge may undergo the process of reclamation. Such waste shall be packaged on-site, temporarily stored on-site with appropriate bunding (spill prevention), and later the waste shall be transported off-site by a MEPA Registered Waste Carrier for export to an authorized hazardous waste incineration facility.

- **Oily Fly Ash & Boiler Dust – EWC 10 01 04* (to confirm)**
 Dismantling of chimneys may result in the removal of fly ash & boiler dust. Such waste shall be packaged on-site, temporarily stored on-site, and later the waste shall be transported off-site by a MEPA Registered Waste Carrier for export to an authorized hazardous waste landfill.
• **Fly Ash containing hydrocarbons – EWC 10 01 13* (to confirm)**
 Dismantling of chimneys may result in the removal of fly ash containing hydrocarbons. Such waste shall be packaged on-site, temporarily stored on-site, and later the waste shall be transported off-site by a MEPA Registered Waste Carrier for export to an authorized hazardous waste landfill.

• **Fire Bricks – EWC 17 01 02**
 Dismantling of chimneys shall generate waste building materials, such as bricks. Such waste shall be collected immediately and transported off-site by a MEPA Registered Waste Carrier to the local landfill.

• **Concrete Lining – EWC 17 01 01**
 Dismantling of chimneys shall generate waste building materials, such as concrete. Such waste shall be collected immediately and transported off-site by a MEPA Registered Waste Carrier to the local landfill.

• **Mix of Fire Bricks & Concrete – EWC 17 01 07 (alternative to 17 01 02, 17 01 01)**
 Dismantling of chimneys shall generate a mix of waste building materials, containing bricks & concrete. Waste shall be classified as such, if the rubble cannot be segregated into separate waste streams. Such waste shall be collected immediately and transported off-site by a MEPA Registered Waste Carrier to the local landfill.

• **Glass Wool Insulation – EWC 17 06 04**
 Dismantling of chimneys shall generate waste glass wool insulation. Such waste shall be collected immediately and transported off-site by a MEPA Registered Waste Carrier to the local landfill.

• **Asbestos Waste – EWC 17 06 01* (to confirm)**
 Dismantling of chimneys and other plant may result in the removal of asbestos waste. Such waste shall be packaged on-site, temporarily stored on-site, and later the waste shall be transported off-site by a MEPA Registered Waste Carrier for export to an authorized hazardous waste landfill.
Other notes:

- Waste generated from this project shall be identified and segregated as far as reasonably possible at the source.
- All waste shall be managed, handled and packaged by experienced and competent persons in this field.
- Packaging of waste shall be performed into containers and/or packaging materials suitable for the respective waste stream. Packaging materials should allow for suitable containment, protection against spills, suitable for temporary storage and transport, appropriately labelled/marked.
- All transfers of waste shall be carried out by vehicles duly authorized as MEPA Registered Waste Carriers, with the respective waste stream classification.
- All transfers of hazardous waste shall be carried out in compliance with ADR Regulations and exported as per Transboundary Movement of Waste Regulations.
- The quantities of waste generated from this project shall be accounted for at the waste packaging stage and/or removal of the waste off-site.
7 MILESTONES & PROGRAM OF WORKS

The program of the project is shown in Gantt Chart.

7.0 Engineering and yard installation

1. Within 2 weeks from the award of the contract, we are forward the following documentation:
 a. Approved Method Statement to be submitted to the Project Supervisor;
 b. Drawings and technical specifications about the works, lifting plans;
 c. The Specifications waste management, transportation and disposal at an authorized waste management facility in accordance with Malta and European;
 d. Certificates for the vehicles and drivers;
 e. Health and safety plan;
 f. Specification, technical report, drawings, fencing and warning signs, utilities, temporary electrical service, wiring and lighting, sanitary facilities

2. Within 3 weeks of commencing works: Yard Mobilization which shall include:
 a. Organisation and mobilization of the contractor’s workforce;
 b. Transporting equipment to the jobsite and setting up of same;
 c. Transporting various tools, materials and equipment to the jobsite;
 d. Erection of temporary facilities as required for field offices

7.1 Working Phase

1. Lines and ducting shall be isolated and blanked.
2. Cleaning and Tanks 6 & 1 shall be completed in no more than 7 weeks.
3. Demolition of Chimney 3 shall be completed in no more than 5 weeks from commencement of works.
4. Demolition of Chimney 1 shall be completed in no more than 7 weeks.